코로나 시리즈 정주행

제목[신규] 마스크 #4) 저산소 스트레스2023-03-19 18:25
작성자 Level 10


 


1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734442/

K Albouaini, M Egred. 심폐운동 검사와 그 응용. Cardiopulmonary exercise testing and its application. Postgrad Med J. 2007 Nov; 83(985): 675682.


2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8964173/

Quan Zhao. 다중선형회귀분석에 기초한 유산소운동이 심폐기능에 미치는 영향. Effects of Aerobic Training on Cardiopulmonary Function Based on Multiple Linear Regression Analysis. J Healthc Eng. 2022; 2022: 7399119.


3) https://en.wikipedia.org/wiki/Heart

심장. Heart. wikipedia. last edited on 3 March 2023


4) https://en.wikipedia.org/wiki/Lung

. Lung. wikipedia. last edited on 26 February 2023


5) https://en.wikipedia.org/wiki/Blood_vessel

혈관. Blood vessel. wikipedia. last edited on 5 February 2023


6) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579386/

Zsolt Radak. 신체 운동 중 산소 소비 및 사용: 산화 스트레스와 ROS 의존적 적응 신호 사이의 균형. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling. Antioxid Redox Signal. 2013 Apr 1; 18(10): 12081246.


7) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306777/

Anne Kerstin Reimers. 운동이 안정시 심박수에 미치는 영향: 중재 연구의 체계적 검토 및 메타 분석. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J Clin Med. 2018 Dec; 7(12): 503.


8) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818249/

폐와 운동. Your lungs and exercise. Breathe (Sheff). 2016 Mar; 12(1): 97100.


9) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278690/

Frank A Dinenno. 규칙적인 지구력 운동은 건강한 사람의 훈련된 팔 다리에서 광범위한 동맥 리모델링을 유도합니다. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001 Jul 1; 534(Pt 1): 287295.


10) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188852/

Kathy Pham. 저산소증 및 염증: 고도 생리학의 통찰력. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol. 2021; 12: 676782.


11) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727037/

Glen E Foster. 건강한 인간의 간헐적 저산소증에 노출된 후 급성 저산소증에 대한 심혈관 및 뇌혈관 반응. Cardiovascular and cerebrovascular responses to acute hypoxia following exposure to intermittent hypoxia in healthy humans. J Physiol. 2009 Jul 1; 587(Pt 13): 32873299.


12) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417258/

Sharen Lee. COVID-19: 안면 마스크를 착용하고 운동하는 동안 심장 돌연사의 원인이 되는 전기생리학적 메커니즘. COVID-19: Electrophysiological mechanisms underlying sudden cardiac death during exercise with facemasks. Med Hypotheses. 2020 Nov; 144: 110177.


13) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159088/

Gregg L. Semenza. 저산소증유도인자와 폐. HIF and the Lung. Am J Respir Crit Care Med. 2011 Jan 15; 183(2): 152156.


14) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648530/

Andrew S Cowburn. 저산소증에 대한 심혈관 적응 및 말초 저항의 역할. Cardiovascular adaptation to hypoxia and the role of peripheral resistance. eLife. 2017; 6: e28755.


15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884626/

Zhanhao Su. 만성 저산소증 하에서의 적응성 심장 대사: 메커니즘 및 임상적 함의. Adaptive Cardiac Metabolism Under Chronic Hypoxia: Mechanism and Clinical Implications. Front Cell Dev Biol. 2021; 9: 625524.


16) https://pubmed.ncbi.nlm.nih.gov/28474128/

U Koehler. 만성 저산소증 및 심혈관 위험: 다양한 형태의 저산소증의 임상적 중요성. Chronic hypoxia and cardiovascular risk : Clinical significance of different forms of hypoxia. Herz. 2018 Jun;43(4):291-297


17)

https://www.atsjournals.org/doi/10.1165/rcmb.2005-0478OC?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

Diane Bouvry. 저산소증에 의한 폐포상피세포의 세포골격 파괴. Hypoxia-Induced Cytoskeleton Disruption in Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology. December 23, 2005


18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246786/

Anne Sturrock. 폐포 상피 세포 선천성 면역 반응에 대한 저산소증의 결과. Consequences of hypoxia for the pulmonary alveolar epithelial cell innate immune response. J Immunol. Author manuscript; available in PMC 2019 Dec 1.


19) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930928/

Holger K. Eltzschigh. 저산소증과 염증. Hypoxia and Inflammation. N Engl J Med. 2011 Feb 17; 364(7): 656665.


20) https://www.ahajournals.org/doi/10.1161/01.atv.19.9.2029

Shi-Fang Yan. 저산소증/저산소혈증에 의한 응고촉진 경로의 활성화와 허혈 관련 혈전증의 발병기전. Hypoxia/Hypoxemia-Induced Activation of the Procoagulant Pathways and the Pathogenesis of Ischemia-Associated Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19:20292035


21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483811/

Xinghui Sun. 핵인자kB와 저산소증. NF-κB and Hypoxia. Am J Pathol. 2012 Nov; 181(5): 15131517.


22) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2176090/

Vladimir Savransky. 만성 간헐적 저산소증은 죽상 동맥 경화증을 유발합니다. Chronic Intermittent Hypoxia Induces Atherosclerosis. Am J Respir Crit Care Med. 2007 Jun 15; 175(12): 12901297.


23) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365608/

Binyu Luo. 간헐적 저산소증과 동맥경화증: 분자기전에서 치료적 치료까지. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. Oxid Med Cell Longev. 2022 Aug 3


24) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692823/

Jeremy P.T. Ward. 저산소성 폐 혈관 수축의 메커니즘과 폐 고혈압에서의 역할: 오래된 문제에 대한 새로운 발견. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009 Jun; 9(3): 287296.


25) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310129/

Kimberly J. Dunham-Snary. 저산소성 폐혈관수축. Hypoxic Pulmonary Vasoconstriction. Chest. 2017 Jan; 151(1): 181192.


26) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5301302/

A. Hussain. 인간의 저산소성 폐혈관 수축: 이야기 또는 신화. Hypoxic Pulmonary Vasoconstriction in Humans: Tale or Myth. Open Cardiovasc Med J. 2017; 11: 113.


27) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587513/

Hajime Abe. 심혈관 질환의 병인에서 저산소증 신호의 역할. The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. J Atheroscler Thromb. 2017 Sep 1; 24(9): 884894.


28) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155636/

Chao, J., Wood, J. G. & Gonzalez, N. C. 폐포 대식세포는 폐포 저산소증에 대한 전신 미세혈관 염증 반응을 개시합니다. Alveolar macrophages initiate the systemic microvascular inflammatory response to alveolar hypoxia. Respir. Physiol. Neurobiol. 178, 439448 (2011).

29) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016968/

Alique, M. et al. 저산소증 유도인자-1α: 혈관 노화에서 내피세포 노화의 마스터 조절인자. Hypoxia-Inducible Factor-1α: The Master Regulator of Endothelial Cell Senescence in Vascular Aging. Cells 9, 195 (2020).

30) https://www.karger.com/Article/Fulltext/452800

Chen, T., Yang, C., Li, M. & Tan, X. 폐포 저산소증 유발 폐 염증: 국소 개시에서 활성화된 전신 염증에 의한 이차 촉진까지. Alveolar Hypoxia-Induced Pulmonary Inflammation: From Local Initiation to Secondary Promotion by Activated Systemic Inflammation. J. Vasc. Res. 53, 317329 (2016).

31) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778164/

Chao, J., Wood, J. G., Blanco, V. G. & Gonzalez, N. C. 폐포 저산소증의 전신 염증은 폐포 대식세포 유래 매개체에 의해 시작됩니다. The Systemic Inflammation of Alveolar Hypoxia Is Initiated by Alveolar MacrophageBorne Mediator(s). Am. J. Respir. Cell Mol. Biol. 41, 573582 (2009).

32) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111627/

Gonzalez, N. C. & Wood, J. G. 폐포 저산소증 유발 전신 염증: 낮은 PO2가 하는 일과 하지 않는 일. Alveolar Hypoxia-Induced Systemic Inflammation: What Low PO2 Does and Does Not Do. in 2732 (2010). doi:10.1007/978-1-4419-1241-1_3.

33) https://www.atsjournals.org/doi/full/10.1165/rcmb.2012-0137TR

Fröhlich, S., Boylan, J. & McLoughlin, P. 폐의 저산소증 유발 염증. Hypoxia-Induced Inflammation in the Lung. Am. J. Respir. Cell Mol. Biol. 48, 271279 (2013).

34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787118/

Shen, H., Kreisel, D. & Goldstein, D. R. 무균 염증 과정. Processes of Sterile Inflammation. J. Immunol. 191, 28572863 (2013).

35) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837241/

Rubartelli, A., Lotze, M. T., Latz, E. & Manfredi, A. 무균 염증의 메커니즘. Mechanisms of Sterile Inflammation. Front. Immunol. 4, (2013)


36)

https://www.cell.com/cell/fulltext/S0092-8674(10)00242-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867410002424%3Fshowall%3Dtrue

Medzhitov, R. Inflammation 2010: 오래된 불꽃의 새로운 모험. New Adventures of an Old Flame. Cell 140, 771776 (2010).

37) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1810472/

Ferrero-Miliani, L., Nielsen, O. H., Andersen, P. S. & Girardin, S. E. 만성 염증: 인터루킨-1β 생성에서 NOD2 NALP3의 중요성. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1βâgeneration. Clin. Exp. Immunol. 147, 227235 (2007).

38) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147972/

Furman, D. et al. 일생에 걸친 질병의 원인으로서의 만성 염증. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 18221832 (2019).

39)

https://www.cell.com/cell/fulltext/S0092-8674(10)00182-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867410001820%3Fshowall%3Dtrue

Nathan, C. & Ding, A. 해결되지 않는 염증. Nonresolving Inflammation. Cell 140, 871882 (2010).

40) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509318/

Korbecki, J. et al. 만성 및 순환 저산소증: HIF-1 NF-κB 활성화를 통한 암 만성 염증의 원인: Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int. J. Mol. Sci. 22, 10701 (2021).

41) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790140/

Dewhirst, M. W. 순환 저산소증, HIF-1, 혈관 신생 및 산화 스트레스 사이의 관계. Relationships between Cycling Hypoxia, HIF-1, Angiogenesis and Oxidative Stress. Radiat. Res. 172, 653665 (2009).

42) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616547/

Hansel, C. et al. 만성 순환 저산소증에 대한 적응은 암세포가 글루타티온 고갈에 의해 중화될 수 있는 MTH1 억제제 치료에 내성이 있게 합니다. Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion. Cells 10, 3040 (2021).

43) https://www.tandfonline.com/doi/full/10.1080/21655979.2022.204739

Bai, C., Zhu, Y., Dong, Q. & Zhang, Y. 만성 간헐적 저산소증은 NLRP3 inflammasome을 활성화시켜 신세뇨관 상피 세포의 열분해를 유도합니다. Chronic intermittent hypoxia induces the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome. Bioengineered 13, 75287540 (2022).

44) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649074/

Bosc, L. V. G., Resta, T., Walker, B. & Kanagy, N. L. 간헐적 저산소증 유도 고혈압의 메커니즘. Mechanisms of intermittent hypoxia induced hypertension. J. Cell. Mol. Med. 14, 317 (2010).

45) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176724/

Polonis, K. et al. 만성 간헐적 저산소증은 인간 백색 지방전구세포에서 노화와 유사한 표현형을 유발합니다. Chronic Intermittent Hypoxia Triggers a Senescence-like Phenotype in Human White Preadipocytes. Sci. Rep. 10, 6846 (2020).

46) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150845/

Morgan, B. J. et al. 만성 간헐성 저산소증이 중추신경계의 안지오텐신 II 수용체에 미치는 영향. Effect of Chronic Intermittent Hypoxia on Angiotensin II Receptors in the Central Nervous System. Clin. Exp. Hypertens. 41, 130136 (2019).

47) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842224/

Alvarez-Martins, I. et al. 조혈 및 골수 미세 환경에 대한 만성 간헐적 저산소증의 영향. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflügers Arch. - Eur. J. Physiol. 468, 919932 (2016)

댓글